
期刊简介
《国际神经病学神经外科学杂志》前身为《国外医学神经病学神经外科学分册》,创刊于1974年,2005年8月改为现刊名,由教育部主管,中南大学主办,中南大学湘雅医院承办。是反映国内外神经病学、神经外科学领域的最新进展和动态的医学专业学术期刊。是中国临床医学核心期刊和中国学术期刊综合评价数据库来源期刊。刊号为ISSN 1673-2642,CN 43-1456/R,大16开,96页,双月刊,邮发代号42-11。《国际神经病学神经外科学杂志》以促进国内外学术的双向交流,为中国神经科学走向世界搭建新的平台为宗旨。主要栏目有论著、临床研究、疑难病例讨论、病例报道、专家讲座、综述、文摘等。本刊主编为刘运生教授、杨期东教授,副主编为袁贤瑞教授、肖波教授,编辑部主任为肖波教授,专职编辑2人。每期发行量在国内同类期刊中居前列。本刊信息量大,多年来在采编形式、可读性及学术价值方面深受国内同行的好评和喜爱,已成为他们在临床和科研工作中不可缺少的专业参考资料。创刊32年来,充分发挥了刊物的优势,所刊载的文章都紧密地结合了临床、科研及临床教学的需要,实用性强,为专家和学者快捷了解本专业领域国内外诊疗新技术、新经验提供了一个最佳窗口,对于推动国际学术交流起到了举足轻重的作用,多年来一直受到该领域广大医务工作者的一致好评。本刊从1999年起即被湖南省宣传部、湖南省科技厅和湖南省新闻出版局评为湖南省一级科技期刊,被《中国学术期刊(光盘版)》、北京大学图书馆、中国科学院文献情报中心、中国社会科学院文献信息中心评定为《中国学术期刊综合评价数据库》来源期刊,并被《中国期刊网》、《中国学术期刊(光盘版)》全文收录期刊,进入中国科学院引文数据库公布的被引频次最高的中国科技期刊500名排行表。
揭秘临床预测:样本量估算的黄金法则!
时间:2024-12-20 11:12:27
临床预测模型是现代医学研究中不可或缺的工具,它们帮助医生更准确地预测疾病的发展、治疗效果以及患者的预后。构建一个可靠的临床预测模型,需要精确的样本量估算。这不仅关系到研究的科学性,也直接影响到模型的实用性和推广价值。
一、现状与问题
在医学研究中,样本量的估算是确保研究结果可靠性的关键环节。传统的样本量估算方法往往基于经验公式,如“每个预测参数至少需要10个事件(EPV, Events per Variable)”的原则。这种方法虽然简单易行,但并未考虑到多分类变量、交互作用、非线性关系等复杂因素的影响,因此在实际应用中存在一定的局限性。
二、更优的估算方法
为了解决上述问题,Richard D Riley等学者提出了一种更为精确的样本量估算方法,并开发出了实用的计算工具——pmsampsize包。这种方法不仅适用于连续、二元分类和时间到事件的结局指标,还提供了一套完整的标准来最小化过拟合的可能性,并确保关键参数的精确估计。
过拟合程度小:即预测效应的预期缩小不超过10%。
模型的表观R方值和调整R方值的绝对差值小于0.05。
精确估计残差标准差:对于连续结果模型。
精确估计预测关键时间点的人群平均结果风险:对于二元或生存结果模型。
三、实例解析
为了更好地理解这一方法,我们可以通过具体的实例来进行解析。假设我们要开发一个用于预测患者手术后恢复情况的临床预测模型,其中包含20个候选预测因子,预期事件发生率为0.174(17.4%),现有预测模型的Cox-Snell R平方值为0.288。使用pmsampsize包进行计算后,我们可以得到所需的最小样本量为662例。
四、验证阶段样本量估算
除了构建模型阶段的样本量估算外,验证模型阶段同样重要。经验估计法建议单中心外部验证至少收集100例阳性事件和100例非阳性事件;多中心外部验证则要求每家中心至少有50例阳性事件。如果目标是得出合适的校准曲线,则需要更大的样本量,至少200例阳性事件和200例非阳性事件。此外,还可以基于效应指标来计算验证阶段所需的样本量,以确保模型验证的准确性和可靠性。
五、注意事项
数据质量:高质量的数据是构建准确预测模型的基础。因此,在估算样本量时必须考虑数据的代表性和质量。
避免数据分割:在可能的情况下,应使用所有可用数据进行模型开发,并采用重采样方法(如bootstrap)进行内部验证。
机器学习的应用:当使用机器学习算法开发预测模型时,通常需要更大的样本量来防止过拟合。
外部验证的重要性:即使内部验证表现良好,也需要外部验证来评估模型在新数据集上的性能。
通过精确估算样本量并遵循一系列标准流程和技术指南,研究人员能够开发出更加可靠和有效的临床预测模型。这些模型不仅有助于提高医疗决策的质量,还能为患者带来更好的治疗结果。